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Introduction

What may have begun as a solution to the inverse function of x1/x has become a

large and intricate discipline that attempts to find simple answers to the question:

What lies beyond exponentiation? (Geisler). Iterated exponentials have a long and

obscure history as part of pure mathematics. Today they are also classified as part

of iteration theory, which itself is a subject that has some overlap with dynamical

system theory and functional equation theory. Iteration theory as a whole has many

applications to all sciences and throughout mathematics (Woon 4). Applications of

iteration theory abound, but applications of iterated exponentials are more scarce.

Throughout the subject’s past, mathematicians have spent a lot of time working

out the details of how to calculate iterated exponentials, but have focused very little

on their applications. The goal of this paper is to show that iterated exponentials

in and of themselves have applications to certain sciences and to other subjects in

mathematics. The subjects that employ iterated exponentials include but are not

limited to: algorithmic complexity theory (Rubstov and Romerio 2), approximation

theory (Yukalov and Gluzman), combinatorics and discrete math (Geisler), computer

arithmetic (Holmes), dynamical systems (Wolfram), iteration theory (Bennet), series
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expansions (Barrow), and population modeling (Robbins). Each one of these subjects

has found some common ground in which iterated exponentials play a role.

Nearly 230 years ago, Euler proved the first theorem about iterated exponentials

(Knoebel). It seems fitting, then, that near this anniversary of the subject, we gather

the purposes which have motivated so many great mathematicians on the search for

the answer to the question: What lies beyond exponentiation?

I. Terminology and notation

The terms for different aspects of exponentiation should be well-known, but for

review, we will cover them here. Exponentiation refers to the proccess of raising a

base b to an exponent a and is written as ba. Exponentiation is a function of two

variables. When a function of one variable is considered, one of two other functions

naturally arise. A power function is a function of one variable x, defined as xa,

and an exponential function is a function of one variable x, defined as bx. When

exponentiation appears in the exponent, then the convention a(bc) = abc
is used.

The terms for iterated exponentials are based on the terms for exponentiation,

but are more specialized. There are three major types of these expressions. An

expression of the form Tn
k=1(ak) = a

a··
an

2
1 is called a tower of height n. When all

exponents but the last are the same, we get an expression of the form expn
b (x) = b·

·b
x

with n instances of b, called an iterated exponential. Lastly, when all of the exponents

are the same we get an expression of the form ab = bb··
b

with a instances of b, and

this is called tetration. When considering tetration as a function of two variables,

the variable a is called the height and the variable b is called the base. A function of

one variable x defined as ax is called the a-th tetrate, and a function of one variable
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x defined as xb is called the base-b tetrational. The inverse functions of tetration are

called super-roots for the functions that satisfy a
4

ax = x and super-logarithms for the

functions that satisfy slogb(
xb) = x. Super-roots are inverses of tetrate functions,

and super-logarithms are inverses of tetrational functions.

The terms for iteration in general should also be well-known, but are covered here

for review. Given a function f(x), the iteration of that function is a function of two

variables n and x, and is written fn(x) = f(fn−1(x)). There are two functions of

one variable based on the iteration of a function. The n-th iterate is a function of

the variable x, and the iterational from x is a function of the variable n.

II. Difficulties of iterated exponentials

The study of iterated exponentials is not a well-developed subject, despite having

existed for hundreds of years. One of the reasons for this is that using them is

extremely difficult, so many have left the issue for someone else to consider. It is

common to assume that some of the properties of exponentials carry over to iterated

exponentials, but it soon is evident that almost none of the properties carry over.

This is in sharp contrast with exponentiation, which satisfies a treasure trove of

equations. The only law of tetration is (a+1)b = b(ab) which can be rather limiting at

first, until it becomes familiar. Iterated exponentials, on the other hand, stem from

iteration, and thus satisfy two such laws: expa+1
b (x) = expa

b (b
x) = b(expa

b (x)).

Although the usual properties of exponentiation do not apply to tetration, it

is common to think that they do. The most common misconception is with the

reciprocal-power-root rule. For exponentiation, x1/n = n
√

x, but it has been proven

to not apply to tetration (Rubstov and Romerio 26). Rubstov et.al. showed with a
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limiting case that assuming 1/nx = n
4 x leads to a contradiction because:

lim
n→∞

1/nx = 0x = 1 and lim
n→∞

n
4 x = x1/x 6= 1

and if it leads to a contradiction, then it cannot be true.

Classifying iterated exponentials has not been very obvious, as it is with many

mathematical concepts. Since the study of iterated exponentials has a lot of overlap

with dynamical systems and functional equations, many mathematicians classify it

as one or the other or both (Woon 1). Two of the most versatile tools used with

tetration are results from dynamical systems (fixed points) and functional equations

(natural Abel function) which form the foundation of iterated exponential theory.

III. Methods of calculating iterated exponentials

Iterated exponentials are easy to calculate for integer iterations since one can just

use exponential functions repeatedly, but for non-integer iterations their calculation

is much more difficult. It is not impossible, though, because non-integer iteration

methods do exist. The two tools mentioned earlier provide such a way to calculate

some instances of iterated exponentials which arise most frequently. Also, not only

do dynamical systems apply to tetration, but tetration also applies to dynamical

systems, as noted in the following:

For our purposes, super-exponentiation naturally arises from analyzing

fixed points of exponential functions ... (Wassell 111)

so tetration is not as much a rare topic as it is of core interest in the dynamics of

elementary functions, specifically exponential functions.
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There many methods of calculating the continuous iteration of a function. One

way is just to use the function, and apply it to itself n times, but this is limiting

the domain of iteration to integer n. A second way is to use pattern recognition to

reduce the iteration of f(x) to some simple rule. If the simple rule allows extension

from integers to real numbers, then there is no need for other methods. For example,

the addition of a constant (f(x) = x+ a) can be iterated to find that f 2(x) = x+2a

and f 3(x) = x + 3a. Using pattern recognition we can see that the iteration of f is

fn(x) = x + na, and we can now replace n with any number we like.

For functions that we can not use pattern recognition on, more advanced methods

of iteration are needed. Each method comes from a different subject, so although

each method could be described by the subject name, most authors use specific

terminology for each method. The first method stems from the idea of a fixed point

in dynamical systems, called regular iteration (Szekeres 92). The second method

(Walker) stems from the solution of functional equations, called natural iteration

(Trappmann). The third method stems from the construction of an infinite matrix

representation of a function, called matrix iteration (Aldrovandi 9). All methods

require a series expansion, and use the series to construct a new series that is then

used to find arbitrary iterations of that function. Although each of these methods

can give slightly different results, together they are a fairly complete set of tools.

IV. Applications due to growth rate

We may sum up these considerations as the ‘principle of crudity’: the

practical upshot is that in estimating a number abc··
it is worth taking

trouble to whittle down the top index, but we can be as crude as we like

about things that bear only on the lowest ones (Littlewood 164).
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Large numbers appear naturally in astronomy, quantum physics, computational

complexity, enumerative combinatorics, and many more subjects. This has led to an

increasing interest in the representation of large numbers, specifically for computer

arithmetic (Holmes). The first step in representing large numbers is to begin to use

alternatives to scientific notation (which uses logarithms) such as tetrational notation

(which uses super-logarithms). Just as logarithms assign small numbers to large

numbers (for example log10(1000) = 3), super-logarithms assign smaller numbers

to larger numbers (for example slog10(10000000000) = 2). The super-logarithm is

defined implicitly by the equation slogb(b
x) = slogb(x) + 1, and the initial condition

slogb(1) = 0. Using this definition, one can produce the values slogb(0) = −1,

slogb(b) = 1, slogb(b
b) = 2, and so on. As you can see, the super-logarithm helps

condense very large numbers into small numbers that we can handle.

The way we perceive numbers can be strange at times. Intuitively we care a lot

about the difference between 5 and 20, but not as much about the difference between

5 million and 20 million. There is not as much feeling behind such large numbers,

even orders of magnitude 105 and 1020 have little meaning beyond the numbers used

to represent them. A number class system was developed (Munafo) that assigns

to every positive number a Munafo class number in such a way that numbers in

the same Munafo class are approximately the same to our initial perception of that

number, in other words, that the numbers are in the same perception class.

Robert Munafo describes this number classification system by saying that the

numbers from one to six are of class 0, because when we see anywhere from one to

six dots, we can perceive the number immediately and exactly. He then goes on to

say that numbers from seven to a million (106) are class 1, because although we could
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count them, we usually have some approximate idea of how many dots are showing.

He continues by saying that numbers from 106 + 1 all the way up to 10106
are class

2 numbers, which includes googol. Following this further, we can say numbers from

10106
+ 1 up to 1010106

are class 3 numbers, which includes googol-plex. Class 3

numbers are those which are far beyond our direct perception, and also beyond the

current state of computer arithmetic. Since not even computers can handle class 3

numbers with today’s methods, one could say that they would never be used in any

math or science. As we shall see later, this has not been the case.

Using the super-logarithm we can reduce Munafo’s definition to the equation:

C(n) = dslog10(n)− slog10(6)e

which allows us to calculate Munafo classes much easier, if the super-logarithm is

known. If the super-logarithm is not known, or not a reasonable option, then the

discrete super-logarithm may be a better choice. The discrete super-logarithm can

either be the ceiling or the floor, but here we use the ceiling for simplicity.

dslogb(n)e =


−1 if n ≤ 0,

dslogb(logb(n))e+ 1 if n > 0.

This definition of the discrete logarithm is very similar to the definition of the

iterated logarithm (Wikipedia ”iterated logarithm”). The only primary difference

between these two functions in that the iterated logarithm is zero when n ≤ 0, and

the discrete logarithm is negative one. Aside from this, they are identical.

Iterated exponentials in and of themselves are most useful for representing large

numbers. Although some systems of representing large numbers with tetration do

require that tetration be extended to real numbers first, using iterated exponentials,
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on the other hand, does not require such an extension. With the usual scientific

notation for large numbers a number is written in the form: 1.234×10n in which the

exponent n is an integer. In order to make this representation unique the mantissa

1.234 is usually restricted to a number between 1 and 10 (not including 10). Using

a similar method, we can write any positive number in the form expn
10(1.234) with

iterated exponentials where the height n is an integer, which does not require an

extension to real numbers. In order to make this representation unique we can again

restrict the argument 1.234 to be a number between 1 and 10 (not including 10).

This is unique because if an expression is of the form 1010x
= exp2

10(x) and x = 10,

then 101010
= exp3

10(1), so any x > 10 will be expressible in iterated exponential

form with an argument between 1 and 10 (not including 10). This notation for large

numbers is called tetrational notation (Holmes 6).

One of the applications of iterated exponentials is in the study of combinatorics.

Combinatorics is the study of how things combine and the number of possible objects

one can form under certain restrictions. One such system is called hierarchies of

height n (Geisler). Eric Temple Bell was the first person to realize the connection

between these numbers and the iteration of f(x) = ex − 1 (Bell), where he proves

many interesting theorems about the number theoretic properties of the iteration of

f(x). The first few derivatives of eex−1 at zero give: {1, 1, 2, 5, 15, 52, ...} which are

now known as the Bell numbers. These represent hierarchies of height 2 because

eex−1 = f(f(x))+1 includes the second iteration of f(x). To see that these numbers

really represent hierarchies of height two, imagine the following. With one element

the heirarchies of height two are {{a}} giving one possibility. With two elements the

hierarchies of height two are {{a}, {b}}, {{a, b}} which gives two possibilities. With
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three elements the hierarchies of height two are:

{{a}, {b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}}, {{c}, {a, b}}, {{a, b, c}}

giving five possibilities. Putting all of this together, we get the sequence {1, 2, 5, ...}

which are exactly the numbers that the second iteration of f(x) generates.

Another system that can be enumerated with tetration is called forests on n nodes

of height less than h. These do not map directly to sets, so there may be an abuse

of notation as a result. The number of possible forests can be obtained by imagining

the following. The number of forests on one node is just {{a}} which gives one

possibility. The number of forests on two nodes: {{a}, {b}}, {{a, {b}}}, {{b, {a}}}

gives three possibilities. The number of forests on three nodes is quite large, and to

skip the proof, ends up being 10 for height one. So putting this all together we get

the sequence {1, 3, 10, 41, 196, ...} (Sloane A000248) for the number of forests on n

nodes of height less than two. The function whose derivatives at zero generate this

sequence is a(ex). The repeated derivatives of
{
1, ex, exex

, · · ·
}

at zero give:

a, n 0 1 2 3 4 5 6 (Sloane OEIS)

0 1 0 0 0 0 0 0 (A000007)

1 1 1 1 1 1 1 1 (A000012)

2 1 1 3 10 41 196 54 (A000248)

3 1 1 3 16 101 756 954 (A000949)

4 1 1 3 16 125 1176 2934 (A000950)

5 1 1 3 16 125 1296 12087 (A000951)

∞ 1 1 3 16 125 1296 16807 (A000272)

which are the numbers of forests on n nodes of height less than a.
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The original application of tetration was to Cantor’s ordinal numbers in number

theory, and the expressions used to generate the next one (Goodstein). The term

tetration was coined in a paper written by Robert L. Goodstein about transfinite

ordinals, and uses tetration to show that one can continue representing ordinals

far beyond the effective limit of ωω. He showed that one could write ωωω
= 3ω

and, in doing so, saved number theorists a lot of trouble. Others have also noticed

the effectiveness of tetration and higher operators at describing Cantor’s transfinite

ordinals (Nambiar), while some are intent on standardizing notation (Knuth).

V. Applications due to other reasons

An application often forgotten is the pedagogical one. In the curriculum of iter-

ation theory, many examples are used to demonstrate the ideas of iteration theory.

Usually these examples involve either a polynomial, or a linear fractional of some

kind. These functions are easier to iterate than exponential functions. Since expo-

nential functions are so much harder to iterate than polynomials, they make great

examples for more advanced iteration techniques. It may well be that the abstract

curiosities of today will be the textbook examples of tomorrow.

Another application that is easy to forget is that of aesthetics and beauty. The

sequence of operators that tetration is a part of: addition, multiplication, exponenti-

ation, tetration, pentation, and so on, collect all major mathematical operators into

a single work of beauty, and in doing so, serve the purpose of pleasing the psyche.

Although this can be dismissed in that it doesn’t help build bridges or put food on

the table, it can be argued that it is just as necessary. In fact some go even further as

to try and ascribe physical meanings to the higher operators beyond exponentiation.
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The logic behind these investigations usually starts with the observation that the

first three operators are so important, as can be seen in the following:

A hierarchy of operations on the positive integers can be denoted using

the arrow symbol. These operations may be of interest to number theo-

rists, as perfect squares, primes, and so on can be generalized into higher

orders of basic operations. The family of continuous arrow functions is

analogous to linear functions at the multiplicative level and quadratics,

cubics, and so on at the exponential level. The arrow functions may find

an application in the sciences. Nature uses the first three basic functions

profusely: why should she not use arrow? (Bromer 173)

which in some sense is a completely valid question. On the other hand, this is relying

on pattern recognition, which is not applicable in all situations.

There is a way to intuitively understand tetration. Addition is the operation that

arises when we juxtapose two lengths in the same dimension. Multiplication is the

operation that arises when we juxtapose two lengths in two dimensions. Exponenti-

ation is the operation that arises when we juxtapose a length x in n dimensions. So,

tetration would be the operation that arises when we juxtapose a length x in (n−1)x

dimensions. What does this mean? It means that not only is x the length, but it

also effects the number of dimensions the length is rotated through.

Another interpretation of tetration uses differential equations. If we differentiate

f(x) = xe we get: f ′(x) = (xe)f ′(x − 1). This means the function satisfies the

equation: f ′(x) = f(x)f ′(x − 1), or rearranging we get: f(x) = f ′(x)/f ′(x − 1). In

other words, the tetrational function f(x) is a function that is equal to the quotient

between its current rate of change and its previous rate of change.
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Conclusion

Since many students and professionals might never encounter these applications

one could argue that iterated exponentials should remain classified as part of pure

mathematics, but the fact that there are so many applications in a wide variety of

subjects brings this into question. The hope that the subject brings to computer

arithmetic, or to exact solutions of physical systems cannot be ignored. Perhaps

when all of these applications are seen together, it will bring a more unified view

of iterated exponentials, and their proper place in the mathematical classification

system will be evident. Although the instances in which iterated exponentials are

used may seem disparate, there is a joy to be found in searching beyond the known

mathematical operations for new operations that give answers to difficult questions.

If anything else is true about iterated exponentials it is that they quench the thirst

for mathematical unity, and as a side note, are also useful in a handful of sciences.

On the other hand, the branches of mathematics in which iterated exponentials

are finding the most use are: algorithmic complexity theory, number theory, and

computer arithmetic. These subjects would dramatically different without iterated

exponentials. With these ever faster growing functions at hand, complexity theo-

rists are finding new upper bounds, number theorists are finding new isomorphisms,

and computer scientists are finding new representations. When multiplying two very

large numbers that are too big to handle, current computers usually fail in what

is called an overflow. If we had not taken the time to learn more about iterated

exponentials, we would have to settle for computer overflows for the rest of our life.

However, mathematicians and scientists across the board are ensuring that within

our lifetime, overflows will be a thing of the past.
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